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Abstract. On-demand modification of the electronic band structures of high-mobility two-dimensional (2D)
materials is of great interest for various applications that require rapid tuning of electrical and optical
responses of solid-state devices. Although electrically tunable superlattice (SL) potentials have been proposed
for band structure engineering of the Dirac electrons in graphene, the ultimate goal of engineering emergent
quasiparticle excitations that can hybridize with light has not been achieved. We show that an extreme
modulation of one-dimensional (1D) SL potentials in monolayer graphene produces ladder-like electronic
energy levels near the Fermi surface, resulting in optical conductivity dominated by intersubband transitions
(ISBTs). A specific and experimentally realizable platform comprising hBN-encapsulated graphene on top of
a 1D periodic metagate and a second unpatterned gate is shown to produce strongly modulated electrostatic
potentials. We find that Dirac electrons with large momenta perpendicular to the modulation direction
are waveguided via total internal reflections off the electrostatic potential, resulting in flat subbands with
nearly equispaced energy levels. The predicted ultrastrong coupling of surface plasmons to electrically
controlled ISBTs is responsible for emergent polaritonic quasiparticles that can be optically probed. Our
study opens an avenue for exploring emergent polaritons in 2D materials with gate-tunable electronic band
structures.
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1 Introduction
Polaritons in two-dimensional (2D) semiconductor materials
(e.g., plasmon-polaritons in graphene1,2 or exciton–trion polar-
itons in transition metal dichalcogenides3,4) have attracted sig-
nificant interest as a promising platform for developing novel
optoelectronic devices because of the variety of tools for con-
trolling the density of carriers. Photocarrier injection via high-
intensity pulses is useful to probe ultrafast transient responses of
such polaritons,5–7 and capacitive field-effect gating is exploited
for active control over steady-state responses. Although a uni-
form gate can tune overall polariton dispersions due to carrier
density dependence of Drude weight in graphene1,2 and exciton/
trion oscillator strengths in transition metal dichalcogenides,8

more exotic electro-optic controls can be achieved using a meta-
gate—a gating structure with spatially varying capacitance.
Especially in graphene plasmonics, spatial modulation of carrier
densities via metagate tuning has been considered for various
applications, such as local phase modulation,9 topological phase
switching,10 and Bloch polariton steering.11

Owing to quantum capacitance effect,12 spatially modulated
carrier densities nðrÞ under electrochemical equilibrium give
rise to superlattice (SL) electric potentials UEðrÞ for Dirac elec-
trons, given as

ℏvF
ffiffiffiffiffiffiffiffiffiffiffi
πnðrÞ

p
þUEðrÞ ¼ μ0; (1)

where vF is the Fermi velocity of Dirac electrons (assumed
to be density-dependent: vFðnÞ ¼ ½0.85þ 0.035 lnðn0∕nÞ�×
106 m∕s, where n0 ¼ 1015 cm−213) and μ0 is the constant
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electrochemical potential (assumed to be μ0 ¼ 0 for grounded
graphene). Therefore, any modulation of the chemical potential
EFðxÞ ¼ vF

ffiffiffiffiffiffiffiffiffiffiffi
πnðrÞp

must be matched by the opposite modula-
tion of the SL potential UEðxÞ ¼ −EFðxÞ. Additional effects,
such as image charges produced by the metagate,14 may become
important with an extremely thin spacer dielectric between
graphene and metagate (e.g., in our proposed system, see
Fig. 1, Uimage ¼ e2

16πϵhBNhb
∼ 100 meV, where ϵhBN ¼ 4 and

hb ¼ 1 nm); however, we choose the spacer thickness to be rea-
sonably thick (hb ¼ 10 nm) so that the SL potential modulation
depth owing to image charges is negligible (Uimage < 9 meV

with hb ¼ 10 nm).
Under a periodic SL potential, the conical Dirac dispersion

deforms into subbands.15–19 Such SL-induced subbands have
been probed by measuring the emergent electronic transport
properties.18,19 Although gate-controlled modulation of the car-
rier density has been utilized9–11 for controlling the propagation
of light (specifically, of graphene plasmons), the effect of spa-
tially varying nðrÞ is fully captured using optical conductivity
models with locally varying Drude weights computed from the
unperturbed electronic band structure. More recently, anisotropy
and increased damping of graphene plasmons due to intersub-
band transitions (ISBTs) under prescribed SL potentials have
been predicted.20 However, no emergent polaritonic manifesta-
tions of such band structure modulations have been reported
to date.

In this study, we show that a one-dimensional (1D) SL po-
tential in a 2D Dirac electron gas leads to coherent intersubband
resonant features of the optical conductivity corresponding to
the emergence of a new electrically controlled quasi-particle:
a hybrid intersubband-plasmon-polariton (HIPP). Resonant
ISBTs occur between flat subbands in the electronic structure
that are generated by potential barriers separating the adjacent
SL periods. When electron tunneling is sufficiently weak, multi-
ple electronic states that are quasi-confined to individual SL
periods can form, giving rise to a ladder-like equispaced energy

level. Transitions between these subbands are responsible for
the ultrastrong resonant enhancement of the oscillator strengths
of the ISBT at quantized electrically controlled frequencies.
We show that the HIPP dispersion relations—propagation wave-
number qðωÞ and decay rate as a function of their frequency
ω—can be systemically controlled via the combination of
a patterned metagate and a continuous backgate, as shown in
Fig. 1(a). The metagate can be used to control the underlying
plasmon-polariton dispersion, whereas the backgate controls
the ISBT frequencies and the Rabi-splitting strengths. Our
results demonstrate that SL engineering in 2D materials—a
versatile technique that has been used to study exotic electronic
transport properties—can also be used for creating novel on-
demand polaritonic materials.

2 Results
Figure 1(a) depicts the geometry of the setup for realizing elec-
trically controlled HIPPs. The combination of a patterned (meta-
gate)21 and unpatterned (backgate) electrical gates is used to
attain better tunability of the free-carrier density in graphene.10,19

The function of the backgate placed underneath the metagate is
to define the carrier densities in those regions of graphene that
are not screened by the metagate. If the duty cycle of the meta-
gate air gaps is very small (S ≪ L), the baseline Drude weight of
graphene’s optical conductivity (proportional to the local chemi-
cal potential EF) is primarily defined by the metagate voltage
VM. On the other hand, the modulation depth of the SL potential
is tuned with the backgate voltage VB. The highly efficient
screening of the backgate by the metagate is illustrated by
the results of an electrostatic simulation of Eq. (1) shown in
Fig. 1(b), where we observe that very few of the electric field
lines emanating from the backgate are reaching graphene. As a
result, the doped carrier density in the region above the metallic
grating is flat and controlled by VM, whereas the region above
the air gaps can be nearly depleted when sufficiently negative
voltage VB is applied to the backgate. The resulting shape of
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Fig. 1 Engineering of SL electric potential in graphene. (a) Physical realization: field-effect
carrier density modulation using a metagate/backgate combination. Inset: SL potential UE ðxÞ
on a schematically exposed graphene plane (VB ¼ −9 V). (b) Electrostatic simulation of (a):
Ez (color-coded) and the electric field lines in the x − z plane. (c) The doped carrier density
nðxÞ (top), the Fermi level EF ðxÞ (middle), and the SL electric potential UE ðxÞ (bottom) for
three backgate voltages: VB ¼ 12 V (dotted red), VB ¼ −6 V (dashed blue), and VB ¼ −9 V
(solid green). Backgate/metagate parameters for (a)–(c): ht ¼ 5 nm, hb ¼ 10 nm, hg ¼ 10 nm,
h0 ¼ 150 nm, L ¼ 300 nm, S ¼ 80 nm, and VM ¼ 1 V.
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UEðxÞ shown in Fig. 1(c) can be viewed as a periodic array of
wide-square potential wells separated by narrower potential
barriers with the heights directly controlled by VB.

The electronic subband structures for Dirac electrons in 1D
SL potentials periodic along the x axis are calculated by solving
the Dirac Hamiltonian equation ðvFνpxσx þ vFpyσy þ UEIÞ·
jk; ji ¼ Ek;jjk; ji with the Bloch ansatz hrjk; ji ¼ eik·rψk;jðxÞ:
"

UEðxÞ ℏvFνðkx − i∂xÞ− iℏvFky
ℏvFνðkx − i∂xÞ þ iℏvFky UEðxÞ

#
ψk;jðxÞ

¼ Ek;jψk;jðxÞ; (2)

where ν is the valley index (þ1 for K-valley and −1 for
K0-valley), j ∈ Z is the subband index, and the Bloch wave
function satisfies the periodicity condition ψk;jðxÞ ¼
ψk;jðxþ LÞ. Here k ¼ kxx̂þ kyŷ is the electron wave vector,
where kx is the Bloch wavenumber parallel to the periodic
direction and ky is the wavenumber perpendicular to the SL
modulation. The same band structure is repeated for each spin
subspace.

For vanishing ky ¼ 0, the conical linear dispersion is exactly
preserved, even in the presence of strongly modulated UEðxÞ
[Fig. 2(a) left] due to Klein tunneling.22,23 At sufficiently large
ky, in contrast, there occur several flat subbands around and be-
low the Fermi surface [Fig. 2(a) right], as the bound states are
formed inside the potential wells via the total internal reflection
of electrons with Dirac dispersion (TIREDD). As clearly shown
in Fig. 2(b), these bound states are confined within a finite

region inside each SL period, with their wave functions evan-
escently decaying across the potential barriers separating adja-
cent SL periods. Therefore, Dirac electrons are guided along the
y axis with negligible tunneling across potential barriers. The
negligible coupling between the bound states in the adjacent
SL periods thus manifests as flat subbands in the band diagrams.

The TIREDD condition is satisfied when a Dirac electron
with energy E and ky ≠ 0 is incident from the x-oscillatory
domain—the electron waveguide (EW)—onto the x-evanescence
domain—the electron cladding (EC). This scenario is best visu-
alized by plotting the local iso-energy contours at the centers of
the EW and EC domains. Inside the EW domain, those are rep-
resented by a circle in the momentum space: k2x þ k2y ¼ k2rðxÞ,
where krðxÞ ¼ jE − UEðxÞj∕ℏvF and ky < krðxÞ. On the
other hand, ky > krðxÞ inside the EC domain, and the electron
wave function exponentially drops along the x direction with the

evanescent decay rate α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y − k2r

q
. Therefore, the EW and

EC domains are defined as the regions in x where ky < krðxÞ
[ky > krðxÞ] conditions are, respectively, satisfied.

Notably, the EC domains do not exist for the electrons with
ky ¼ 0, leading to Klein tunneling. Also, as illustrated in
Fig. 2(c), TIREDD occurs not only when an electron travels
from a lower-potential to a higher-potential domain—a more
familiar picture—but it also in the opposite case where the elec-
tron travels from a higher potential domain to a lower potential
domain. The latter case corresponds to an antiparticle in the
high-energy physics context, or to a valence band electron in
the graphene context. As a result, bound states out of valence
band electrons are formed around the potential barriers [see state
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Fig. 2 The TIREDD mechanism is responsible for flat subbands of graphene electrons in SL elec-
tric potentials. (a) Left: no intersubband gaps for ky ¼ 0 Dirac electrons due to Klein tunneling.
Filled bands (E < μ0 ¼ 0): blue, unoccupied bands E > 0: green. Green dots: original Dirac cross-
ing points prior to band folding. Right: emergence of intersubband gaps for large-ky electrons,
strongly modulated SL potential. (b) Top, dashed lines: energy levels of several examples of
bound states located right below the Fermi surface (i) at the lowest energy of the conduction-band
TIREDD and (ii) at the highest energy of the valence band TIREDD. The energy levels are defined
relative to the SL potential landscape (VB ¼ −9 V). Solid green line: SL electric potential UE ðxÞ.
Bottom three: wave function amplitudes ψ†ψ of (i)–(iii). Negligible tunneling between the adjacent
SL periods: emergence of the flat subbands. (c) TIREDD of (top) conduction and (bottom) valence
band Dirac electrons. Circles: iso-energy contours in the momentum space at the centers of the
EW and EC regions. Dashed lines: energy levels, green lines: the SL potential. SL parameters:
same as in Fig. 1.
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(iii) in Fig. 2(b)]. Each flat subband in the band diagram in
Fig. 2(a) corresponds to a TIREDD-based bound state, and
the flatness depends on whether the width of the ECs satisfying
ky > krðxÞ is sufficiently thicker than the decay length α−1. We
note that the mean free path of electrons in hBN-encapsulated
graphene can be as high as 1 μm at the room temperature and
near 10 μm at cryogenic temperatures T < 100 K.24 Thus we
expect that the TIREDD condition can be realized in realistic
experiments because the mean free path in high-quality gra-
phene samples is much longer than the width of the SL potential
wells.

Another notable feature of the TIREDD-based flat subbands
is the ladder-like energy level spacing around the Fermi surface.
With a rough approximation (for more detailed analysis, see
Supplementary Material), the bound-state energy levels of
Dirac electrons in a square potential well (for now, let us
consider the conduction band TIREDD only) are given as

Ej ∼ ℏvF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπj∕WÞ2 þ k2y

q
þ U0, where W is the width of

potential well, U0 is the potential inside the well, and j is
the band index. Even though this expression is not completely
linear in j, it quickly approaches the asymptotic linear relation
Ejþ1 − Ej ∼ πℏvF∕W when Ej − U0 is only twice greater than
ℏvFky. Thus the ISBT energy is maintained as nearly uniform
over a substantial portion of the Fermi surface (see Fig. 3),
which resonantly enhances the oscillator strength of the ISBT
at certain quantized frequencies given as integer multiples of
πvF∕W. In Fig. 3, six or seven bands are altogether contributing
to the ISBT nearly at the same frequency.

Ultrastrong ISBT optical responses manifest as resonant
features in graphene optical conductivity, which is calculated by
the Kubo formula under random phase approximation (RPA),20,25

given as

σxxðq;q0;ωÞ
σ0

¼ iπgsgνℏ2v2F

Z
d2k
ð2πÞ2

Z
d2k0

ð2πÞ2

×
X
j;j0

fðEk;jÞ−fðEk0;j0 Þ
Ek;j−Ek0;j0

hk;jjv̂xe−iq·r̂jk0;j0ihk0;j0jv̂xeiq0 ·r̂jk;ji
ℏðωþ iγÞþEk;j−Ek0;j0

;

(3)

where σ0 ¼ 2e2∕h is the conductance quantum, gs ¼ 2 and
gν ¼ 2 are the spin and valley degeneracy, fðEÞ ¼ 1∕
½expð−E∕kBTÞ þ 1� is the Fermi–Dirac distribution (μ0 ¼ 0),
v̂x is the velocity operator (v̂x ¼ vFσx for Dirac electrons),
and each 2D momentum integration is done as

R
d2k ¼R π∕L

−π∕L dkx
R∞−∞ dky. Note that q and k denote the momenta of

the optical (electronic) fields, respectively. Since our system is
periodic in the x axis, the conductivity is vanishing except
when q − q0 is an integer multiple of G0x̂ (G0 ¼ 2π

L ); therefore,
the surface current density response is given as KxðqÞ ¼P

q0∈fqþmG0x̂jm∈Zgσxxðq; q0ÞExðq0Þ. In this work, we only
consider the plasmonic excitations along x axis (q ¼ qx̂,
q0 ¼ q0x̂) with transverse-magnetic polarization (Bx ¼ Ey ¼ 0).26

For the results plotted in Fig. 4, we assumed a cryogenic temper-
ature of T ¼ 60 K and a plasmonic scattering rate (Drude loss)
of γ ¼ 2π × 0.2 THz, which are well within the experimentally
attainable ranges.27 We calculated the conductivity σxx for
each of three SL potentials given in Fig. 1(c) and also for an
unmodulated graphene with uniform doping of EF ¼ 0.15 eV
as a comparison. The physical quantity displayed in Fig. 4 is
ω × σxx as opposed to σxx. This choice is for better visualizing
the deviation of emergent conductivity behaviors from a plain
Drude conductivity, since, in Drude limit, ω × σxx becomes
a constant (i.e., Drude weight iD ¼ ℏω × σ∕σ0). Even in the
no-modulation case, a resonant behavior is found along a linear
line vFq ¼ ω. This corresponds to the intraband transitions that
occur when the phase velocity of the optical field matches with
the Fermi velocity of Dirac electrons. This velocity-matching
effect becomes one of the key distinguishing factors between
the simple Drude conductivity model and the nonlocal RPA con-
ductivity model in uniformly doped graphene.28 When the SL
modulation depth is moderate (VB ¼ 12 V case), only the first
(Δj ¼ 1; Δj refers to the difference between two subband in-
dices) ISBT resonance appears faintly, whereas the conductivity
at higher frequency is almost the same as the no-modulation
case. With much stronger modulation depths, however, the first
ISBT resonance peak becomes the most prominent feature
and the higher-order (Δj ¼ 2, 3;…) ISBT resonance peaks also
become visible. The ISBT conductivity response vanishes at
q ¼ q0 ¼ 0 for even Δj and at q ¼ q0 ¼ π

L for odd Δj,
due to selection rules related to the inversion symmetry of
the wave functions. Thus we provide the conductivity at
q ¼ q0 ¼ π

2L in Fig. 4(b) to show the resonant features for both
odd and even Δj.

Figure 5 shows the resulting HIPP dispersions featuring the
ultrastrong coupling (USC) between the ISBT and the underly-
ing plasmon polaritons. If the system is spatially homogeneous,
the polariton eigenmodes in graphene appear as the zeros of the
scalar dynamical dielectric function ϵðq;ωÞ ¼ 1 − q2σðq;ωÞ∕
iωCðq;ωÞ.25,29 Here Cðq;ωÞ is the dynamical capacitance
of the system,30 which connects the dynamic carrier density
oscillation δnðq;ωÞ and the dynamic electric potential field
on graphene δUEðq;ωÞ: δUE ¼ e2

C δn. In essence, the dynamic

0
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0.02

in unit of
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ISBT energy
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Fig. 3 The massless dispersion of Dirac electrons makes the
ISBT energy be nearly uniform over a broad region of
the Fermi surface (E ¼ 0). The electronic subband structure
(VB ¼ −9 V case) is shown along ky at a fixed kx ¼ 0; any choice
of kx value would produce similar subband dispersions along ky ,
since the subbands at moderately high ky become flat in kx

direction, as shown in Fig. 2(a). Each vertical black bar is given
as a guide to the eye for denoting a vertical transition (Δj ¼ 1)
from an occupied state below the Fermi surface to a state above
the Fermi surface, and all bars have the same length. In this
case, the ISBT energy appears as very uniform roughly within
6π∕L < jky j < 15π∕L, which is almost 45% of the whole area of
the Fermi surface jky j < 20π∕L.
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capacitance C encodes the information about the dielectric
environment around graphene, in contrast to the conductivity
σ that encodes the dielectric property of graphene itself. With
a periodic modulation along the x axis like in our system,
the dynamical dielectric function is given as a matrix form,

½ϵðq;ωÞ�m;m0 ¼ δm;m0 −X
l

C−1ðqm;ql;ωÞ
ql · qm0

iω
σxxðql;qm0 ;ωÞ;

(4)

where m;m0; l ∈ Z are integer indices, qm ¼ qþmG0x̂ is the
harmonic overtone of the polariton Bloch wave vector q, and
C−1 is the inverse dynamic capacitance that governs a linear
relation δUEðqÞ ¼ e2

P
q0C

−1ðq; q0Þδnðq0Þ (for more detailed
explanation, see the Supplementary Material). Then the polar-
iton Bloch eigenmodes appear as the zeros of the determinant
of the dynamical dielectric function matrix,11,21,29,30 i.e., the
matrix ½ϵðq;ωÞ� becomes noninvertible. Therefore, in Fig. 5,
we plotted the density of states approximated as DOSðq;ωÞ ¼
−Im½Trð½ϵðq;ωÞ�−1Þ� to visualize the HIPP dispersion for polar-
itons propagating along the x axis (q ¼ qx̂).

With a moderate depth of the SL modulation (VB ¼ 12 V
case), the HIPP dispersion is similar to the plasmon-polariton
dispersion with no modulation, and the ISBT feature is very
subtle. As the SL modulation gets deeper, there emerge several
HIPP branches resulting from the hybridization between the
underlying plasmon polaritons and the ISBT resonances.
With an extreme modulation (VB ¼ −9 V case), we observe
a huge Rabi splitting (∼2 THz) between the lowest branch
and the second lowest, which is even comparable to the
ISBT frequency itself (∼2 THz). In such a USC regime, a recent
study reported that the electronic band structure of the material
could be modified in return, due to the vacuum fluctuation of
the strongly interacting polaritonic modes.31 We believe that our

system would exhibit a similar behavior, but we did not consider
such additional corrections in this work. Figure 5(d) illustrates
that this HIPP phenomenon can be detected in the far-field re-
flection as well. Each peak in the reflection spectra corresponds
to the q ¼ 0 mode along the second-lowest HIPP branch. In the
reflection calculation, we assumed that the backgate substrate is
silicon doped with a carrier density of 1015 cm−3. We note that
the depth of reflectivity peaks (or dips) can be engineered (up to
an order of magnitude) with the oxide substrate thickness
and the silicon backgate doping density (see Supplementary
Material).

3 Discussion
The emergent HIPPs found in our proposed system have several
unique features compared to the usual intersubband-polaritons
or intersubband-plasmon-polaritons studied in other platforms.
First, the quantum well structure is given along the direction of
the polariton propagation. Accordingly, the ISBT of our system
occurs through in-plane electric fields along the x axis, which
allows the far-field detection even with normal incidence of
light. In contrast, conventional ISBT structures are based on ver-
tical engineering of quantum wells,31–33 and the optical coupling
requires out-of-plane electric fields. Second, both the ISBT
quantum well structures and the plasmon polaritons that couple
to the ISBT are hosted simultaneously by monolayer graphene.
This also contributes to the USC, since the plasmon-polariton
field strengths are by nature maximum at the plane of graphene.
Similarly, in conventional vertically confined quantum well
structures, when the ground-state subband is populated, the
2D electron gas is naturally formed, hosting plasmon polaritons
confined around it.32 But both the ISBT ground-state wave func-
tion and the plasmon-polariton fields have finite widths along
the z axis, unlike our system where the subband states are con-
fined at an atomically thin layer. Therefore, the overlap integral
of the electron wave functions and the polaritonic fields, which
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contributes to the strength of Rabi splitting, is greatly enhanced
in our system.

Third, as discussed earlier, the linear dispersion of Dirac
electrons allows multiple (6 to 7) bands with equispaced energy
levels to resonantly build up the ISBT strength. This resonant
enhancement from multiple ladder-like bands near the Fermi
surface still appears in massive electron systems (see the
Supplementary Material), as the potential well has a finite depth
with slanted sidewalls and the quadratic dispersion in momen-
tum gets linearized at the vicinity of the Fermi surface. Our
analysis in the Supplementary Material reveals that, given the
same SL potentials UEðxÞ shown in Fig. 2(b), it requires an
extremely tiny effective mass (∼2% of an electron mass me)
to obtain the same ISBTenergy level spacing found in graphene.
Since the ISBTenergy level spacing in massive electron systems
scales as inversely proportional to the square root of the
effective mass, too high effective masses would require much
narrower lateral quantum wells to maintain the same ISBT
energy level spacing (or much better sample mobility and
reduced Drude loss to maintain the same HIPP quality factor).
Thus we suggest that 2D electron gas at InGaAs/GaAs interfa-
ces, where the effective mass of electrons is 4% to 7% of me,

34

would be a reasonable material platform to study this HIPP phe-
nomenon with massive electrons. In this paper, however, we
mainly focused on the massless Dirac electrons, as metagate-
tuned SL potential and band structure engineering have been
readily implemented in graphene, whereas such techniques have
not been attempted or matured with 2D electron gases in GaAs
material systems, to the best of our knowledge.

We emphasize again that the HIPPs shown in Fig. 5 operate
in the ultrastrongly coupled regime, featuring a giant Rabi split-
ting that becomes comparable to the ISBT frequency. In this
regime, several quantum electrodynamic phenomena can arise,
such as material bandgap renormalization31 or antiresonant cou-
pling that breaks the rotating wave approximation and the Kubo
conductivity formula.35 Therefore, more precise determination
of the HIPP dispersion would require a full quantum description
of the USC physics, which we leave as a future work. Finally,
even apart from the HIPP physics, the TIREDD-induced ladder-
like energy bands themselves can be useful for high-harmonic
generations. Nonlinear optical responses can be resonantly
enhanced by engineering the equispaced energy level of sub-
bands in quantum well structures.36 Thus the 1D SL potential
in graphene can also be used as a novel material platform for
nonlinear optics.

In conclusion, our study suggests that the SL engineering in
2D materials can lead to the discovery of novel polariton phe-
nomena emerging from the deformed electronic band structures.
The modified subband structure of Dirac electrons under a 1D
SL adds a completely new dimension to the polariton compo-
sition, leading to the formation of the HIPPs. This emergent
HIPP is easily tunable by the double-gating scheme, provides
a way to detect the SL-induced band structure changes with
a far-field optical measurement, and becomes suitable for the
study of quantum and nonlinear optics based on ultrastrong
light–matter interaction. Introducing a 2D SL18 or patterning
other 2D materials beyond graphene37,38 could lead to more
opportunities to study emergent polaritons with other novel
formation mechanisms.

We envision that the experimental implementation of the
reported phenomenon is readily realizable, considering the
state-of-the-art fabrication schemes of metagate-based graphene

SLs11,17,19,30 and availability of ultrahigh quality of graphene
samples.24,27 The polaritonic dispersions can be directly probed
by near-field scanning optical microscopies1,2,5,7,9,11,27,28,30 or can
be probed in a rather simple experimental setup through far-field
reflections, as suggested in this work. The speed of polariton
modulation through ultrafast electronics can extend to tens
of gigahertz, limited by the external electronic settings (e.g.,
network analyzer or RF probes) rather than the electron
relaxation/response time in graphene.39

4 Materials and Methods
SL potentials and the electrostatic field lines shown in Fig. 1
were computed by COMSOL Multiphysics with a nonlinear
solver, given the nonlinear boundary condition set by Eq. (1),
by setting the graphene sheet as a surface charge density
element.40 Electronic band structures of Dirac electrons under
SL potentials in Figs. 2 and 3, HIPP optical conductivity in
Fig. 4, and polaritonic density of states in Fig. 5 were computed
by an in-house (rigorous coupled-wave analysis) code based on
Eqs. (2)–(4). Detailed high-level descriptions of the numerical
methods are provided in the Supplementary Material.
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